Constitutive Model for Aluminum Alloys Exposed to Fire Conditions
نویسندگان
چکیده
منابع مشابه
A Constitutive Model for Sands
In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the 
yield surface. In the present...
متن کاملA Constitutive Model for Sands
In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the yield surface. In the present s...
متن کاملhigh temperature applications of iron-aluminum alloys exposed to sulfur gases
iron-aluminum alloys are one of the most resistant alloys against sulfidation/oxidation environments with low oxygen partial pressures. the high sensitivity to hydrogen embrittlement is the main reason for decreasing of their room temperature ductility. there is a drop of strength above 600 c and their creep resistance is fairly weak. it is possible to increase ductility up to 15 percents and i...
متن کاملA micromechanics-inspired constitutive model for shape-memory alloys
This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...
متن کاملConstitutive Model of Shape Memory Alloys for Asymmetric Quasiplastic Behavior
A simple constitutive model of shape memory alloys for analyses of tension–compression quasiplastic behavior is derived. Here, three martensitic variants are considered; namely, thermal-induced, tensile stress-induced, and compressive stress-induced martensitic variants. Reorientation from one variant to another variant is assumed to take place according to a reorientation energy criterion base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metallurgical and Materials Transactions A
سال: 2008
ISSN: 1073-5623,1543-1940
DOI: 10.1007/s11661-008-9470-0